Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism

نویسندگان

  • Qing Lu
  • Valerie A. Harris
  • Ruslan Rafikov
  • Xutong Sun
  • Sanjiv Kumar
  • Stephen M. Black
چکیده

We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury.

Neonatal hypoxic-ischaemic (HI) brain injury resulting in encephalopathy is a leading cause of morbidity and mortality with no effective treatment. Here we show that caffeic acid phenethyl ester (CAPE), an active component of propolis, administered either before or after an HI insult, significantly prevents HI-induced neonatal rat brain damage in the cortex, hippocampus and thalamus. In additio...

متن کامل

Neuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia

Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...

متن کامل

Curcumin attenuates hypoxic-ischemic brain injury in neonatal rats through induction of nuclear factor erythroid-2-related factor 2 and heme oxygenase-1

Curcumin has previously demonstrated anti-inflammatory, anti-infective and immuno-suppressive effects. In the present study, whether the attenuating effects of curcumin against hypoxic-ischemic brain injury in neonatal rats are mediated via nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was investigated. A model of hypoxic-ischemic brain injury was created using ...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Genetic and pharmacologic manipulation of oxidative stress after neonatal hypoxia-ischemia.

Oxidative stress is a critical component of the injury response to hypoxia-ischemia (HI) in the neonatal brain, and this response is unique and at times paradoxical to that seen in the mature brain. Previously, we showed that copper-zinc superoxide-dismutase (SOD1) over-expression is not beneficial to the neonatal mouse brain with HI injury, unlike the adult brain with ischemic injury. However,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015